

Acronym List

AACE	Airworthiness Assurance Center of Excellence
ACR	Avionics Computer Resource
ASU	Arizona State University
ATM	Air Traffic Management
AVSI	Aerospace Vehicle Systems Institute
CNS	Communication, Navigation, and Surveillance
COTS	Commercial-off-the-shelf
FAA	Federal Aviation Administration
FPGA	Field-Programmable Gate Array
FY	Fiscal Year
HUMS	Health Usage Monitoring System
IMA	Integrated Modular Avionics

Acronym List (cont)

MC/DC Modified Condition/Decision Coverage

NASA National Aeronautics & Space Administration

CONTINUOUS IMPROVEMENT

NJIT New Jersey Institute of Technology

OO Object-oriented

OS Operating System

RTOS Real-Time Operating System

SDSS Software and Digital Systems Safety

WAAS Wide-Area Augmentation System

3

Briefing Outline

- SDSS Research Program Purpose
- SDSS Technical Community
- SDSS Research History
- SDSS Research Priorities
- Overview of SDSS Tasks

SDSS Research Program Purpose

- To address safety, performance, and technology issues in the areas of:
 - Software
 - Complex electronic hardware
 - Digital systems
- SDSS research supports the policy and guidance initiatives of the FAA

VINUOUS IMPROVEMENT

5

SDSS Technical Community

- · Leader: Leanna Rierson
- Sponsor: Barbara Lingberg
- Tech Ctr Mgr: Chuck Kilgore
- Members:
 - Will Struck
- John Lewis
- Jorge Castillo
- Jim Treacy
- Robin Sova
- Tony Lambreghts
- Gary Horan
- Tom Kraft
- Brenda Ocker

- Larry Bessette

Dennis Wallace

SDSS Research History

- · Past Research in the Areas of:
 - Modified Condition/Decision Coverage (MC/DC)
 - Service History
 - COTS Software
 - COTS Hardware
- See FAA Software Web-site for Reports:
 - http://av-info.faa.gov/software

7

SDSS Research Priorities

- 1- COTS software and components
- 2- Object oriented technology
- 3- Complex electronic hardware case study
- 4- Software development tools assessment
- 5- Software verification tools assessment
- 6- New paradigm for aircraft fly-by-wire control

CONTINUOUS IMPROVEMENT

- 7- Databus evaluation criteria
- 8- Semiconductor wearout effects
- 9- Tool qual of complex electronic hardware
- 10- Real-time scheduling analysis

SDSS Priorities (cont)

- 11- Ethernet as an aviation databus
- 12- Avionics computer resource issues
- 13- Microprocessor evaluations
- 14- Safety engineering in software
- 15- Software service history and reliability models

CONTINUOUS IMPROVEMENT

- 16- Transfer of aviation data on the internet
- 17- COTS ground systems verification
- 18- Software service history case study

9

1. COTS Software

- Purpose: To evaluate COTS operating systems (OS), integration techniques, and protections schemes.
- Significance: A number of projects are attempting to use COTS OS's in aviation products.
- Status:
 - Phases 1 & 2 were carried out in FY01 by UTRC.
 - Phases 3 & 4 are currently underway with UTRC.

2. Object-Oriented (OO) Technology

- Purpose: To identify and address OO issues in airborne software, particularly Level A software.
- Significance: A number of manufacturers are using OO design and programming techniques for Part 23, 25, 27, 29, & 33.
- Status:
 - Phase 1 is underway with NASA & Boeing
 - FAA/NASA held a workshop in April 2002

CONTINUOUS IMPROVEMENT

Phase 2 will likely begin in FY03

11

3. Complex Hardware Case Study

- Purpose: To carry-out a real-life fieldprogrammable gate array (FPGA) design using RTCA/DO-254 and to identify areas for improvement.
- Significance: DO-254 is being invoked by the FAA for all classes of aircraft.
- Status: NASA Langley is in the final stages of this project.

CONTINUOUS IMPROVEM

4. Software Development Tools

- Purpose: To identify software development tool qualification issues and to propose solutions.
- Significance: Many manufacturers are proposing the use of autocode generators and other development tools.
- Status: Contract with Embry-Riddle recently awarded through FAA's Airworthiness Assurance Center of Excellence (AACE).

13

5. Software Verification Tools

- Purpose: To identify software verification tool qualification issues and to propose solutions.
- Significance: Nearly all airborne software projects use tools to satisfy some of the DO-178B objectives. Flight controls in particular are typically Level A and must have accurate tools. FAA and industry need evaluation criteria for verification tools.
- Status: Being started through NASA Langley.

6. New Fly-By-Wire Paradigms

- Purpose: To evaluate possibility of adaptive controls on Part 23 aircraft.
- Significance: Could significantly improve the safety of general aviation.
- Status: Being carried out by Wichita State University via AACE.

CONTINUOUS IMPROVEMENT

15

7. Databus Evaluation Criteria

- Purpose: To evaluate a number of databuses and develop criteria for evaluation.
- Significance: Several "new" databuses are being proposed on biz jet projects (part 23 & 25).
- · Status:
 - Not currently funded.
 - AACE project on Ethernet might address some of these concerns (ASU and Honeywell).

8. Semiconductor Wearout

- Purpose: To identify and address effects of semiconductor wearout.
- Significance: All advanced avionics use semiconductors. They may wearout in 2-5 years. This affects all classes of aircraft and engines (part 23, 25, 27, 29, 33).
- · Status:
 - Not currently funded.
 - Aerospace Vehicle Systems Institute (AVSI) is attempting to get something started.

17

9. Tool Qual of Complex Electronic Hardware Tools

- Purpose: To identify tool qual issues for complex hardware and propose solutions.
- Significance: A number of engine, engine control, aircraft, & avionics manufacturers will use tools to comply with DO-254. However, criteria for accepting tool experience and evaluating accuracy is unclear.
- Status: Not currently funded.

10. Real-time Schedulers

- Purpose: To identify and address safety issues of real-time operating system schedulers.
- Significance: A number of avionics & engine control manufacturers are using real-time operating systems (RTOS) with real-time schedulers.
- Status:
 - Contract recently awarded to NJIT via AACE to address some of these concerns.

19

11. Ethernet as a Databus

- Purpose: To identify safety issues with Ethernet and to address them.
- Significance: Ethernet is being strongly supported by large aircraft manufacturers & their suppliers in new projects. Several safety concerns have already been identified.
- Status:
 - Contract recently awarded to ASU and Honeywell via AACE.

12. Avionics Computer Resource (ACR)

- Purpose: To identify ACR issues and propose solutions for safe implementation.
- Significance: ACR supports the new "Integrated Modular Avionics" (IMA) approach being proposed by many manufacturers.
- Status: Not currently funded.

21

13. Microprocessor Evaluation

- Purpose: To develop criteria for new microprocessor technology.
- Significance: All manufacturers are using new and more advanced microprocessors on their aircraft and engines. However, FAA does not have clearly defined criteria for acceptance.
- Status: Not currently funded. Hope to start in FY03.

VTINUOUS IMPROVEMENT

14. Safety Engineering in Software

- Purpose: To evaluate the safety assessment processes and their applicability in software assurance.
- Significance: Some manufacturers desire to use safety techniques to replace some of the RTCA/DO-178B objectives.
 However, there is currently no scientific evidence supporting this approach.

CONTINUOUS IMPROVEMENT

· Status: Not currently funded.

23

15. Software Service History and Reliability Models

- Purpose: To evaluate the applicability of reliability models in software assurance.
- Significance: Some manufacturers desire to use reliability models to support their service history claims.
- Status:
 - In FY01 a software service history handbook was created.
 - There is currently no funding for this phase of the effort.

16. Transfer of Aviation Data on the Internet

- Purpose: To evaluate safety and security issues of transferring flight critical data via internet.
- Significance: Several manufacturers desire to transfer their flight software via internet to save time and expense.
- Status: Not currently funded.

25

17. COTS Ground Systems Verification

- Purpose: To evaluate COTS issues in support of health-usage monitoring system (HUMS) (e.g., safety, security, & integrity).
- Significance: HUMS is being implemented by several helicopter manufacturers. This project also helps support CNS/ATM initiatives.
- · Status:
 - Contract recently awarded to ASU and UTRC via AACE.

18. Software Service History Case Study

- Purpose: To use the WAAS program as a case study for software service history, using the newly developed handbook.
- Significance: WAAS plans to use service history. This project benefits the WAAS program, CNS/ATM implementation, and the airborne world.
- Status: Recently started through the WAAS program office via contract with Ferrell and Associates Consulting.

27

Related Research

- NASA's Aviation Safety Program
- Aerospace Vehicle Systems Institute (AVSI)
- Individual Companies
- Universities

Summary

- Tasks Finishing Soon: 2, 3, 6
- Tasks Underway: 1, 4, 5, 10, 11, 17, 18
- Tasks Starting soon: 8, 13
- Stay posted to FAA software web-site for research reports
 - http://av-info.faa.gov/software
- Feel free to contact myself or Barbara Lingberg for further information.

CONTINUOUS IMPROVEMENT